Plagas de los productos almacenados

Marcelino DE LOS MOZOS PASCUAL

Resumen: Desde el inicio de la agricultura, el hombre ha entrado en conflicto con numerosas especies de artrópodos. La necesidad de acumular alimentos para reducir la dependencia del medio en las primeras comunidades humanas, conllevó la creación de un hábitat característico que fue rápidamente colonizado por varias especies desde sus biocenosis naturales. El control de las plagas de almacen fue complejo desde su inicio, y aún hoy sigue siendo, a pesar de los notables avances tecnológicos. En este trabajo se repasan los principales grupos y especies de artrópodos asociados a los productos almacenados, especialmente de tipo alimentario. También se hace hincapié en los tipos de daños que producen y en las técnicas de control más habituales. Se concluye que el manejo integrado es la opción más adecuada que permitirá reducir en un futuro las graves pérdidas económicas que actualmente ocasionan estos organismos.

1. Perspectiva

Considerando que el fósil más antiguo claramente atribuible al grupo de los insectos tiene una datación aproximada de 400 millones de años (Scourfield, 1940), podemos asegurar sin duda alguna que los insectos han vivido la mayor parte de su existencia sobre la tierra totalmente al margen de los avatares humanos. Igualmente se puede afirmar que en los inicios de la andadura humana sobre el planeta, hace sólo un breve lapso en la escala geológica, los insectos ya ocupaban de forma estable cualquier hábitat terrestre concebible y su espectro trófico ya incluía todo tipo de plantas, animales y restos orgánicos de variedad procedencia.

Las primeras interacciones del hombre con los insectos probablemente fueron tan ambiguas como las mantendidas en la actualidad, si bien con un menor grado de diversificación. Es razonable pensar que algunos parásitos actuales del hombre y otros primates superiores ya habían establecido esta relación con los primitivos homínidos de los que derivó la especie humana. No obstante, la interacción del hombre con algunos de sus parásitos actuales tiene un origen muy posterior derivado de pautas conductuales específicamente humanas, como ocurre con el conocido chinche de las camas (Cimex lectularius), estrechamente emparentado con otros ectoparásitos asociados a los murciélagos, y que según parece evolucionó como parásito humano durante la utilización de las cuevas por el hombre en los periodos glaciales del Plioceno (Robinson, 1996).

En el otro polo de la balanza, cabe considerar que los insectos se postulan como uno de los primeros grupos animales incluidos regularmente en la dieta de las formas protohominidas que habitan en las regiones tropicales a finales del Mioceno, y también de los primeros grupos de homínidos que mucho después vivieron en África como cazadores-recolectores, y que probablemente no desempeñarían esta asequible fuente de proteínas en épocas de escasez (Robinson, 1996). De hecho, la entomofagia es un hábito bastante extendido entre las civilizaciones humanas actuales (Defoliart, 1992).

Al margen de estas interacciones más o menos directas entre hombre e insectos, existe una cuestión obvia que condiciona otro tipo de relaciones de tipo indirecto, aunque no por ello menos importantes. El hombre y los insectos están condicionados a compartir hábitats y recursos, y por este motivo la aparición de fenómenos de competencia interespecífica es algo inevitable. Desde sus inicios, el desarrollo de la cultura humana ha permitido la colonización de nuevos hábitats y regiones geográficas, así como la utilización de nuevos recursos. Esta ampliación del 'entorno humano', que todavía hoy persiste, ha traído consigo la continua confrontación del hombre con diversas especies de insectos que previamente eran desconocidas e intrascendentes para las sociedades humanas. A pesar de los notables avances tecnológicos de la humanidad, este enfrentamiento todavía se mantiene en plena vigencia a juzgar por las graves pérdidas que los insectos continúan ocasionando al hombre en todos los ámbitos.

Las primeras interacciones de este tipo derivaron de la necesidad de los hombres primitivos de obtener refugio y almacenar comida. La especie Homo habilis, la más antigua de nuestro propio género, apareció en África hace 2,5 millones de años y pervivió hasta hace aproximadamente 1,3 millones de años. La estructura social de estos primeros 'hombres' era muy limitada, formada por pequeños grupos de cazadores-recolectores que utilizaban campamentos temporales muy sencillos. A esta especie se asocian las primeras estructuras de hábitat doméstico, en donde aparecen restos de las culturas líticas más primitivas (Olduvayense), así como de los animales y vegetales que utilizaban para su alimentación. Este hecho puede considerarse como el inicio del largo camino de la hominización, y también de gran parte de la variada problemática del hombre en relación con los insectos. Larvas de coleópteros y lepidópteros debían aparecer en los frutos recogidos por estos hombres para su almacenamiento y transporte. Especies carroñeras de dípteros y coleópteros vivirían sin duda en los restos de los animales cazados en la
zona y transportados a los campamentos para la alimentación del grupo. Cuando más adelante la especie Homo erectus colonizó zonas de clima templado en otros continentes y comenzó a utilizar refugios más sofisticados y permanentes, en cuya construcción se usaban madera y pieles, probablemente los insectos asociados a estos materiales en el medio natural (termitas, coleópteros xylophagos y saprófagos, etc.) comenzaron a causar sus primeros daños (Robinson, 1996).

La adopción de la agricultura y la ganadería hace unos 10.000 años, ha sido probablemente el cambio más dramático de la especie humana en toda su historia evolutiva. Habitualmente se hace referencia a este cambio como una auténtica revolución (revolución neolítica) que permitió la estabilización de los asentamientos humanos permanentes con una elevada población, y de aquí toda la posterior evolución política, socioeconómica y cultural que ha seguido nuestra especie. Para garantizar el mantenimiento de estos núcleos de población el hombre tuvo que desarrollar técnicas eficientes de producción de alimentos. El cultivo de algunas especies vegetales, como el trigo, la cebada y algunas leguminosas, y la domesticación de algunos mamíferos (básicamente oveja, cabra y cerdo), permitió una cierta independencia del medio natural, pero también inició el tortuoso camino de las plagas y enfermedades agrícolas y de los problemas veterinarios. Por otra parte, garantizar esta independencia en épocas de calamidades naturales exigía la conservación de alimentos durante largos períodos, lo cual, como era de esperar, también supuso el advenimiento de un nuevo problema de competencia con otros organismos, entre los que los insectos juegan un papel destacado.

De la antigua civilización egipcia ha llegado hasta nosotros un legado de incalculable valor en diversos ámbitos. En relación con el tema que nos ocupa, tenemos las primeras pruebas escritas sobre el almacenamiento de granos y otros alimentos, así como de las primitivas medidas de control de los insectos que atacaban estos productos. La cebada (Hordeum vulgare) y una especie de trigo (Triticum dicoccum), eran un importante componente de la dieta de los egipcios. El almacenamiento del grano para periodos de escasez fue una práctica común, que se hizo extensiva hace aproximadamente 4.500 años y de esta época ya se tiene conocimiento del uso de construcciones de gran capacidad para este propósito (Levinson & Levinson, 1989). Es bien conocido que los egipcios consideraban la muerte como una transición hacia la inmortalidad. El alma del difunto (ka) requería para este propósito que su cuerpo permaneciera intacto, así como una adecuada provisión de alimentos u otras posesiones que pudiera necesitar para el tránsito. Esta creencia llevó a los egipcios a desarrollar complejas técnicas de momificación para preservar los restos del difunto, y también a incluir en los enterramientos diversas ofrendas funerarias, entre ellas algunos alimentos (granos de cereales y leguminosas, pan, frutos secos, etc.). El estudio de estos enterramientos ha permitido descubrir que tanto las momias como las ofrendas alimentarias, fueron atacadas por una variedad gama de insectos. En los cuerpos momificados se han hallado diversos coleópteros necrófagos (Anthenus spp., Dermestes frischii, Necrobia rufipes), y algunos restos de dípteros cíclorrafos. En relación con los alimentos almacenados, se han encontrado ejemplares de diversos coleópteros (Gibbium psylloides, Lasioderma serricorne, Oryzaephilus surinamensis, Rhizopertha dominica, Sitophilus granarius, Stegobium paniceum, Tribolium castaneum), lepidópteros (Ephesia spp., Plodia spp.) y también algunos hispanópteros parasitoides como Bracon hebetor (Levinson & Levinson, 1989). Estos insectos pueden considerarse como una representación fidedigna de las especies que atacaban los alimentos almacenados en el antiguo Egipto, ya que los alimentos depositados en las tumbas probablemente procedían de los almacenes del difunto o de su familia. Estos fósiles constituyen la primera evidencia conocida del ataque de insectos a los productos que el hombre pretendía conservar, incluido su propio cuerpo.

2. Principales grupos de artrópodos asociados a los productos almacenados

Cuando se habla de productos almacenados se suele pensar intuitivamente en alimentos. Sin embargo, se pueden considerar como producto almacenado materiales muy diversos que el hombre conserva durante un periodo de duración variable para una utilización posterior. La madera, los tejidos, el tabaco, las flores secas, los animales disecados, etc., son productos 'almacenables' y susceptibles de ser usados como sustratos alimenticios por diversas especies de insectos que pueden convertirse en plagas, potenciales o reales, de dichos productos. Algunas especies han llegado a citarse como dañinas para materiales como el plomo o los cables telefónicos, aunque obviamente no por motivos tróficos (Aguilar-Amat, 1930; Flores, 1960). En cualquier caso, son las plagas de productos de tipo alimentario, especialmente los granos de cereales, leguminosas y sus derivados, las que tienen una mayor relevancia y sobre las que se han desarrollado más extensamente las técnicas de control.

Según la F.A.O. (1985), los principales agentes responsables del deterioro en los productos alimenticios almacenados son hongos, roedores, aves y artrópodos, si bien factores de tipo abiótico, como la temperatura, humedad relativa ambiental y contenido en humedad del producto juegan un papel destacado en la incidencia de estos agentes. Los hongos, especialmente Aspergillus y Penicillium son uno de las mayores causas de deterioro de los productos almacenados, y están siempre asociados a condiciones de elevada humedad. Los daños producidos por roedores, especialmente en zonas rurales, también pueden ser muy importantes. Las aves tienen una mayor trascendencia como consumidoras de granos en el campo, bien en la siembra, o antes de la recolección. Las especies que han conseguido una mayor adaptación a las condiciones de almacen y que causan daños más cuantiosos se hallan entre los artrópodos, especialmente los insectos y algunas especies de ácaros.

Más de 1.000 especies de insectos infestan los productos almacenados en todo el mundo. Estos insectos pertenecen a órdenes tan diversos como Coleoptera, Dermaptera, Dictyoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Psocoptera y Zygentoma. Las especies de mayor importancia económica se hallan entre los coleópteros y los lepidópteros.

En el ámbito mundial se citan unas 600 especies de coleópteros sobre productos almacenados, que pertenecen a una treintena de familias. Entre los más frecuentes en nuestras latitudes se hallan los curculiónidos del género Sitophilus que causan importantes pérdidas en granos de cereales almacenados. Por su parte, varias especies de brúquidos, en especial las del género Callosobruchus, son especialmente dañinas para las leguminosas. Las especies de Tribolium (Tenebrionidae) son plagas importantes de los granos y harinas de cereales y derivados amiláceos. Igualmente ocurre con Cryptolestes spp. (Cucujidae), Oryzaephilus spp. (Silvanidae), Rhizopertha...
dominica (Bostrichidae), Tenebrio molitor (Tenebrionidae), Tenebrioides mauritanicus (Trogossitidae) y Trogoderma granarium (Dermentidae). Los anóbidos Lasioderma serricorne y Stegobium paniceum también son muy comunes, si bien su espectro trófico es bastante más amplio que en otras especies. En relación con los alimentos almacenados de origen animal, una de las especies más frecuentes es Necrobia rufipes (Cleridae).

Entre los lepidópteros, las especies asociadas a productos almacenados son más de 70 en todo el mundo, agrupadas en unas 10 familias, si bien las plagas más importantes pertenecen a los piñáculos. Las especies de Ephestia y Cadra se cuentan entre las más dañinas. Probablemente la más popular es la polilla gris (E. kuehniella), que causa serios daños en la harina. Otras especies comunes son la polilla del ajo (E. weberella (= E. teiphrinella)), la polilla del tabaco (E. aquella (= E. elutella)), la polilla del dífil (Cadra calidella (= E. calidella)), la polilla de las uvas pasas (Cadra figulifera (= E. figulifera)) y la polilla del cacao (Cadra cautella (= E. cautella)). La polilla bandeada (Phodia inter punctella) es un piñáculo muy común que ataca una gran variedad de productos alimenticios almacenados. Algunos otros lepidópteros también revisten un cierto interés, como el tineido Nemapogon granella (= Tinea granella), y sobre todo el geléquido Sitotroga cerealella, que es una grave plaga de los cereales en nuestro país.

Los psocópteros son insectos bastante frecuentes sobre los productos almacenados, aunque habitualmente no causan daños por sí mismos, sino que se alimentan de hongos y huevos de otros artrópodos. La abundancia de estos insectos es señal inequívoca de una higiene deficiente en la conservación del producto.

Varias especies de ácaros son comunes en los productos alimenticios almacenados y pueden desarrollar poblaciones ingentes, si bien suelen pasar desapercibidos por su pequeño tamaño. Son más frecuentes en climas húmedos, y aparecen en los almacenamientos cuando la humedad es elevada. A menudo causan graves problemas alérgicos. Las especies más dañinas pertenecen al orden Acarida (= Astigmata), familias Acaridae y Glycyphagidae. El ácaro de la harina (Acarus siro), que vive sobre harinas, granos y diversos alimentos de origen animal, es probablemente la especie más perjudicial. El acarido Rhizoglyphus echinopus es otra especie común que ataca los bulbos de diversas plantas. Entre los glícifágidos, las especies más comunes son Glycyphagus domesticus, que se alimenta de microorganismos que crecen sobre productos almacenados, y algunas especies de Tyrophagus, comunes sobre jamón y queso.

Mención aparte merecen las especies asociadas a materiales como la ropa, pieles, etc que en la literatura anglosajona aparecen agrupadas bajo el término de “fälschen pest”, y que son frecuentes tanto en almacenados como en casas y museos. A este grupo pertenecen insectos polífagos y carroñeros que desde sus hábitats naturales colonizan frecuentemente el ambiente humano y pueden causar daños de diversa consideración. Las colecciones depositadas en museos privados o públicos (libros y documentos, pinturas, tapices, especímenes zoológicos y botánicos, etc.), son recursos no renovables de incontables valor muy susceptibles al ataque de insectos como las conocidas polillas de la ropa (Tinea pelionella, Tineola bisselliella y Trichophaga tapetzella), de la familia Tineidae, y los escarabajos de las alfombras, entre los que destacan Attagenus unicolor (=A. megatoma) y varias especies de Anthrenus (A. museum, A. seraphiluriae, etc.), todos ellos de la familia Dermestidae. Los anóbidos también pueden tener una cierta relevancia en este capítulo. Lasioderma serricorne y Stegobium paniceum pueden utilizar como alimento materiales celulósicos, y atacar por tanto el papel. Los daños de Anobium punctatum a la madera también pueden ser de consideración (ver Yela en este volumen).

Los productos almacenados soportan una fauna característica, compuesta no sólo por los organismos que los utilizan como alimento, sino también por sus propios enemigos naturales. Entre los predadores más frecuentes se encuentran algunos hemípteros (antocóridos), coleópteros (carábidos, estafílidos e hispéridos) y también varios grupos de arácnidos. Las arañas son bastante comunes en los almacenes, aunque no directamente sobre el producto, sino en paredes, suelo, residuos, etc. Los pseudócercoriles son preda dores de pequeños invertebrados, y son frecuentes en productos muy infestados. Los ácaros de la familia Cheyleitidae son predadores habituales de acarídos y algunas especies de Pyroptotidae que se alimentan de huevos y fases inmaduras de insectos y de otros ácaros que infestan productos almacenados. También se citan numerosas especies de hime nópteros parasitoides que utilizan el cuerpo de sus víctimas para el desarrollo de sus propias larvas. Las especies más comunes pertenecen a las familias Bethylidae, Braconidae, Ichneumonidae, Pteromalidae y Trichogrammatidae.

3. La conquista de los almacenes

Povolny (en Robinson, 1996) estableció una división del ambiente biótico o biocenosión definiendo los conceptos de eubiocenosión, agrobicenosión y antropobicenosión. La eubicenosión es un concepto que abarca las biocenosiones originales que se dan en hábitats naturales con pocas modificaciones debidas a la actividad humana. Las agrobicenosión y las antropobicenosión están asociadas con hábitats secundarios o culturales creados por la actividad humana. Las agrobicenosión se asocian con hábitats transformados por la agricultura, con un grado de alteración variable en función de la intensidad de las prácticas agrarias. Las antropobicenosión son conjuntos de organismos que viven en un hábitat muy restringido (doméstico y periódeméstico) donde el hombre desarrolla sus actividades domésticas cotidianas. Las plagas agrícolas forman parte de las agrobicenosión. Las plagas de productos almacenados pueden actuar tanto a nivel de agrobicenosión como de antropobicenosión.

Los productos almacenados constituyen un hábitat adecuado para especies que en su eubicenosión original subsisten sobre recursos muy escasos y dispersos. La mayoría de las especies todavía pueden hallarse en su hábitat natural, pero en algunos casos, la adaptación ha sido tan extrema que la especie depende totalmente de la disponibilidad del producto almacenado para sobrevivir. Entre las especies que se hallan sobre los productos almacenados Linsley (1944) definió varios grupos en función de sus hábitos en su ambiente natural, incluyendo, seminívoros, carroñeros, saprófagos, micrófagos, etc. Entre los hábitats originales de las especies más comunes asociadas a los productos almacenados habitualmente se citan los frutos desecados, las semillas, y los nidos de artrópodos y vertebrados.

3.1. Frutos desecados

Los frutos desecados se consideran el hábitat original de muchas polillas de almacén. El grado de adaptación es muy variable (Krasilnikova, 1966). Especies como
Ectomyelis ceratiae y Cadra figularia son especies de transición que se desarrollan normalmente sobre frutos en condiciones de campo y también en almacén. Sin embargo, Cadra cautella, Ephesia aquella y Plodia interpunctella presentan un mayor grado de adaptación a las condiciones de almacén, y muy raramente se encuentran en el campo. La atracción de algunos pílidos, como Cadra cautella o Plodia interpunctella, hacia las formas verticales rectangulares se interpreta como un comportamiento reflejo que se explicaría en base a la utilización de los troncos de los árboles frutales como guía visual para acceder a los frutos (Levinson & Hoppe, 1983).

3.2. Semillas

Algunas conocidas especies que atacan alimentos almacenados, viven en expensas de semillas o frutos diversos en sus hábitats originales. Las fases larvarias de estos coleópteros brúquidos viven casi exclusivamente en semillas de leguminosas. Los ciclos vitales de estos coleópteros se ajustan a dos patrones claramente diferentes (Pajni, 1987). Algunas especies tienen un ciclo biológico largo, con una sola generación anual (monovoltinas). Realizan la puesta sobre las vainas de las plantas huésped y las larvas completan su desarrollo a expensas del endosperma de las semillas. Los nuevos adultos aparecen después de cosechar las semillas (habitualmente en los almacenes) y se refugian hasta la primavera siguiente. A este grupo pertenecen la mayor parte de las especies del género Bruchus, y aunque sus daños, a menudo importantes, suelen manifestarse cuando las semillas ya están almacenadas, no pueden ser consideradas como auténticas plagas de almacén, pues son incapaces de multiplicarse en este hábitat. Por el contrario, otros brúquidos tienen un ciclo biológico corto y aunque habitualmente inician su ataque en el campo, tienen la potencialidad de hacer la puesta sobre las semillas secas ya almacenadas, donde se reproducen continuamente hasta que el alimento se agota (polivoltinas). A este grupo pertenecen las auténticas plagas de almacén, como Acanthoscelides obtectus, Callosobruchus chinensis, C. maculatus, Caryedon serratus y Zabrotes subfasciatus, que causan graves pérdidas en las leguminosas almacenadas por todo el mundo.

Los coleópteros curculiónidos del género Sitophilus causan graves daños en los granos de cereales. El grado de adaptación de las distintas especies es variable y relacionado con la capacidad de vuelo de cada especie. S. zeamais y S. oryzae son especies difíciles de distinguir, que habitan en zonas tropicales y subtropicales, aunque pueden sobrevivir en zonas templadas exclusivamente en condiciones de almacen (especialmente S. oryzae). Ambos coleópteros son activos voladores y a menudo inician el ataque de los granos en el campo, continuando después su ataque en almacén. La especie S. granarius, ha perdido su capacidad de vuelo, aunque su distribución es muy amplia debido a la acción vectorial del hombre. Esta especie es originaria del Mediterráneo oriental, y según se ha puesto de manifiesto en diversas experiencias, su hábitat original parece ser los frutos rajados de querócinas (Hove, 1965; Stein, 1990). La desaparición de los bosques en sus áreas de origen, probablemente ha conllevado la extinción de esta especie de su biotopo original. S. granarius se ha adaptado de tal forma a las condiciones de almacen, que depende absolutamente de la presencia de granos almacenados para sobrevivir. Nunca ataca los granos en el campo y de hecho no es atraído por el trigo inmaduro ni puede reproducirse sobre él (Levinson & Kanajlia, 1982).

El lepidópteró geléquido Sitotroga cerealella es una especie cosmopolita con distribución preferente en zonas tropicales y templado-cálidas. Ataca los granos de cereales en el campo, pero puede seguir reproduciéndose en almacén. En nuestras latitudes no soporta la climatología inviversal, sin embargo, la especie se mantiene de un año a otro gracias a que las larvas consiguen pasar el invierno en los almacenes (Domínguez García-Tejero, 1989).

3.3. Nidos de artrópodos y vertebrados

Algunas especies que atacan los productos almacenados tienen su reservorio natural en los nidos de insectos gregarios y de vertebrados (Hinton, 1945). Varias especies de coleópteros derméstidos (Anthismus, Attigensus, Dermestes, Trogoderma, etc.) se hallan con frecuencia en los nidos de himenópteros y en los refugios sedosos construidos por algunas larvas de lepidópteros limántidos, tauraatoméfidos e hiponomeítidos. Por otra parte, los restos de las presas atacadas en la red de algunas arañas, también son aprovechadas como alimento por algunas especies de derméstidos, cuyas larvas están protegidas contra la araña por sus cepillos pilosos (Nutting & Spanger, 1969).

En los nidos del gorrión común se localizan algunas conocidas especies domésticas y de almacén, como Anthismus scrophulariae, A. verbasci, Attigensus pellio, A. piceus, Ephesia elutella y Pyralis farinalis. Igualmente, en el suelo de los palomares habita una variedad fauna que se alimenta de los restos animales y vegetales allí depositados (Dermestes bicolor, D. lardarius, Panus fur; T. tecta, Tenebrio molitor y Tenebrio mauritianus). Los nidos de roedores y murciélagos también soportan poblaciones importantes de especies como Anthismus scrophulariae y Attigensus piceus (Woodroffe, 1961).

3.4. Adaptaciones fisiológicas a las condiciones de almacén

Los productos almacenados están habitualmente aislados del exterior, por lo que la luz suele ser escasa, y factores como la temperatura y la humedad son relativamente estables. Estas condiciones son muy diferentes de las existentes en el medio natural, por lo que entre las innumerables especies que componen la eubiontosis, solamente aquellas que tuvieron un cierto grado de preadaptación al ambiente de almacén se han desarrollado como auténticas plagas. Levinson & Levinson (1994) recogen una serie de atributos fisiológicos que han permitido la colonización del nuevo hábitat.

Los productos almacenados sufren tener un contenido en humedad muy bajo, por lo que es imperativo tener un sistema eficaz de conservación del agua. Los túbulos de Malpighi de muchos insectos de almacén son habitualmente de tipo criptonefrídico, adosados a la pared del almacén para extraer el agua de las heces (Saini, 1964; Grimmstone & cols., 1968). El producto de excreción es ácido úrico (uricóticos) y las heces son secas y duras. También es posible la obtención de agua mediante oxidación de nutrientes (agua metabólica). El grado de adaptación de las distintas especies para alimentarse sobre un sustrato desecado es muy variable. Las especies mejor adaptadas probablemente sean Ephesia kuehniella y Tenebrio molitor, que pueden desarrollarse sobre sustratos con un contenido en humedad del orden del 1%. Orzyaeulphus surinamensis y Tribolium confusum requieren un contenido mínimo del 6%, y otras especies como Lasioderma serricorne, Panus tectus, Sitophilus granarius y...
Stegobium paniceum no pueden desarrollarse si la humedad del sustrato es inferior al 10%. Las especies que viven sobre productos almacenados son muy sensitivas a los cambios de humedad, y están dotadas con higroceptores muy eficientes (Levinson & Kanauja, 1982).

La escasa luminosidad y la ausencia de fotoperiodo pueden suponer una importante restricción ambiental para el desarrollo de muchas especies. Los machos de Ephesia kuehniella requieren un mínimo de luminosidad para emprender el vuelo cuando son estimulados por la feromonas sexual femenina (Levinson & Buchelo, 1981).

El espacio físico también puede suponer una traba para el acoplamiento sexual. Las especies de Ephesia se acopian en un espacio reducido, sin embargo, Ectomyelois ceratoniae, menos adaptada a las condiciones de almacén requiere un espacio amplio para la cópula (Cox en Levinson & Levinson, 1994).

La resistencia a condiciones ambientales adversas, usualmente mediante el desarrollo de diapausa larvaria (Howe, 1962) y tolerancia al frío (Solomon & Adamson, 1955), es una característica presente en algunas especies de almacén, especialmente en zonas templadas. Se han detectado diferencias en la respuesta de varios piráldidos ante condiciones adversas de dieta, temperatura o fotoperiodo. Especies como Cadra cautella y C. ficiullitella aumentan la proporción de larvas diapausantes, lo cual no ocurre en C. cautella (Cox en Levinson & Levinson, 1994). En acaridos suele darse una fase de resistencia o ‘hipopópsis’, que se desarrolla cuando las condiciones ambientales se tornan adversas (García Mari & cols., 1991).

La polífagia es bastante común entre las especies de productos almacenados, lo cual permite mantener las poblaciones en los almacenes. Sin embargo, los productos almacenados suelen ser deficiarios en uno o más nutrientes esenciales. Las especies de almacén son capaces de desarrollarse sobre estos sustratos deficiarios estableciendo relaciones simbióticas con microorganismos, especialmente bacterias y levaduras, que les proporcionan esos nutrientes. Los microorganismos simbióticas pueden estar alojados en el interior de orgánulos especializados del insecto (micetomas), o bien ser ingeridos como contaminantes con el mismo alimento. Las levaduras presentes en los micetomas de Lasioderma serricorne y Stegobium paniceum suministran a estos coleópteros una gran variedad de nutrientes, como ácido fólico, ácido pantotéico, biotina, colina, niacina, riboflavina, tiamina, etc. (Pant & Fraenkel, 1950).

4. Tipos de plagas de almacén

Las especies que aparecen sobre los productos almacenados son muy diversas, tanto por su filiación taxonómica como por su origen eucaricónico y sus características biocéntricas. Como ya se ha comentado, no todas las especies que aparecen sobre un determinado producto se alimentan necesariamente de él. La presencia de depredadores y parásitoside es un claro ejemplo. Las especies micófagas que se alimentan de los hongos que proliferan sobre el producto en condiciones de mala conservación (humedad elevada), pueden ser muy frecuentes. Los psocópteros son un caso típico, si bien algunas especies pueden actuar secundariamente como plaga. Algunas especies de ácaros como Glycyphagus domesticus o Tyrophagus putrescentiae se alimentan sobre todo de microorganismos que crecen sobre el producto, causando pocos daños directos, aunque sí molestias y depreciación.

Algunas especies generalistas que forman parte de la fauna doméstica y peridoméstica (por ejemplo eucaracás, hormigas, grillos, algunos coleópteros, etc.) pueden encontrarse de forma ocasional sobre los productos almacenados pero su incidencia es mínima en relación con las verdaderas plagas de almacén.

Entre las plagas que atacan los granos almacenados se distinguen habitualmente dos tipos de especies. Un primer grupo engloba las denominadas 'plagas primarias', que son aquellas capaces de perforar las semillas y por tanto de atacar granos intactos. En general son especies altamente especializadas en la infestación de granos. En este grupo se encuadran los curilúridos del género Sitophilus, Rhizopertha dominica y algunas polillas como Sitotroga cerealella. Todas las especies de bráquipodos que se desarrollan sobre los granos de leguminosas en almacén son plagas primarias. Las hembras de Sitophilus caván con su rostro un orificio en la superficie del grano y depositan un huevito en su interior. En las restantes especies la hembra deposita los huevos en la superficie del grano, y es la larva la que horada su camino hacia el interior del grano. En cualquier caso, las fases larvaria y pupal se desarrollan siempre dentro del grano, y es durante este periodo cuando se producen los daños más intensos.

Las denominadas 'plagas secundarias' sólo pueden desarrollarse sobre granos dañados, bien mecánicamente durante su procesado o por la acción de otras plagas. En general las plagas secundarias suelen ser especies de amplio espectro trófico, poco especializadas en el ataque a granos. Las hembras reparten los huevos sobre la masa de granos y las larvas se alimentan desde el exterior. Ejemplos típicos son Tribolium spp., Oryzaephilus surinamensis y algunas polillas (Ephesia spp., Plodia interpunctella).

5. Daños provocados por las plagas de almacén

Debido a las condiciones ambientales existentes en los almacenes, la mayoría de las plagas importantes de almacén tienen un desarrollo rápido y alcanzan con prontitud la madurez sexual. Como resultado, su tasa intrínseca de crecimiento es muy alta y las poblaciones aumentan con rapidez. Las generaciones se suceden y en sólo unos meses una sola pareja de insectos puede desarrollar una progenie suficiente para infestar varias toneladas de producto.

No obstante, en algunas especies el ataque no se extiende a todo el volumen de producto almacenado, pues los individuos son incapaces de profundizar en el sustrato y los daños se localizan en las capas superficiales. Esto es característico de especies como Ephesia kuehniella, Sitotroga cerealella y Trogoderma granarium. El ácaro Acarus siro produce daños de consideración en la harina, pero su ataque se restringe a los 4 o 5 centímetros superficiales (García Mari & cols., 1991).

En principio, los daños que producen las plagas de productos almacenados pueden adscribirse a dos categorías: daños de tipo directo y daños de tipo indirecto.

5.1. Daños directos

Los daños directos son los más obvios, y son producidos por la alimentación de la plaga sobre el producto. Pueden ser causados por las larvas y adultos, o bien exclusivamente por las larvas. La mayor parte de los coleópteros de almacén (por ejemplo: Lasioderma, Oryzaephilus, Sitophilus, Tribolium) causan daños tanto de larvas como de adultos. Por
el contrario, en las polillas y algunos coleópteros (brúquidos y algunos derméstidos y anóbidos) el daño es producido por las larvas. En las especies del primer grupo los adultos son muy longevos y el periodo de oviposición muy prolongado, sin embargo, en las polillas y brúquidos los adultos viven poco tiempo y no se alimentan, estando la puesta concentrada en unos pocos días (Imura, 1990). En el caso de los ácaros, tanto adultos como fases inmaduras (larvas y ninñas) se alimentan activamente sobre el sustrato.

Los daños directos, en general, suelen ser de escasa importancia en comparación con los daños indirectos. usualmente se valoran como la pérdida de peso y/o volumen del producto en un determinado periodo, aunque ello supone una estimación defectuosa, pues no considera los exuvios, excrementos y otros restos de la plaga, que pueden ser muy abundantes. En el ácaro de la harina, la acumulación de estos restos puede suponer el 50% del volumen original del producto (Hill, 1987).

Varias especies que atacan granos, tienen un comportamiento trófico selectivo, pues se alimentan preferentemente del embrión (por ejemplo: Acanthoscelides obtectus, Cryptolestes ferrugineus, Ectobius spp., Plodia interpunctella). El daño directo de estas especies es bastante grave, pues si los granos se destinan a la alimentación hay una notable pérdida de valor nutritivo, y si se dedican a simiente, la reducción de la capacidad germinativa del grano puede hacer inviable este uso.

5.2. Daños indirectos

Este tipo de daños en productos alimentarios suele ser mucho más grave que el daño directo, y con frecuencia ocasiona la total inutilidad del producto, tanto para consumo humano como animal. La presencia de exuvios, yecesaciones y otros restos de las especies infestantes causa una notable pérdida de valor comercial del producto. Algunos insectos y ácaros confieren a los productos atacados un sabor y olor desagradables, y su ingestión puede causar serios problemas digestivos, tanto al hombre como a los animales. También es muy frecuente que los restos de algunas especies provoquen reacciones alérgicas a las personas que entran en contacto con los productos atacados, que pueden ir desde una simple dermatitis hasta graves problemas de asma. Especies como Trogoderma granarium o los ácaros, son especialmente proclives a generar este tipo de reacciones.

La gran cantidad de seda producida por Ephesia kuehniella cuando se desarrolla sobre granos y harinas no sólo perjudica el producto, sino que ha llegado a causar avenidas en la maquinaria de las fábricas harineras (Domínguez García-Tejero, 1989).

La actividad metabólica de la plaga crea un considerable calentamiento del producto en la zona atacada (hot spot). El gradiente de temperatura provoca la condensación de humedad en la periferia de la zona atacada, lo cual favorece el desarrollo de hongos e incluso la germinación de los granos. Los propios insectos actúan como vectores de esporas fúngicas por todo el producto (Mukherjee & Nandi, 1993). El desarrollo de hongos supone un grave problema, pues el producto se contamina con micotoxinas y queda inservible para la alimentación, ya que pueden actuar como agentes carcinógenos y provocar hepatitis y otras afecciones graves, tanto en el hombre como en el ganado (Lacey & cols., 1980).

Por último, animales como las cucarachas o algunas aves, pueden actuar como vectores de graves enfermedades para el hombre (por ejemplo: Salmonella), por lo que su presencia sobre productos almacenados no es nunca admisible.

6. Métodos de control

Los primeros indicios documentados en relación con la protección de productos almacenados contra el ataque de insectos provienen también de los egipcios. En el denominado "Papyrus Ebers", un pergamino hierático escrito hace unos 3.500 años, y que se considera una compilación de la medicina terapéutica durante las dinastías antiguas y media, se sugirieron una serie de medidas para pulsar el efecto de las plagas sobre los granos almacenados (Levinson & Levinson, 1989). Entre estas medidas se citan el lavado con soluciones de carbonato cálcico y la aplicación de ciertas sustancias (grasa de pájaros y gatos, cenizas de excrementos animales) sobre las paredes de los graneros y los granos. Probablemente las grasas tendrían un efecto repelente por la liberación de ácidos grasos de cadena corta, mientras que las cenizas actuarían como abrasivo. La fumigación con incienso preparados basados en resinas, gomas y especias también fue usada por los egipcios para el control de plagas en casas y almacenes.

Para preservar el cuerpo de los difuntos de la putrefacción y el ataque de insectos carroñeros, los egipcios desarrollaron complejas técnicas de embalsamamiento. Estas técnicas se iniciaban con la evisceración del cuerpo, que posteriormente era desecado y parcialmente desengrasado mediante el tratamiento con diversas sales. Las cavidades corporales y la superficie del cuerpo eran tratadas con plantas aromáticas y aceites esenciales que, al menos temporalmente, conferían una protección frente al ataque de insectos. En la cavidad abdominal de la momia de Ramsés II se hallaron hojas de Nicotiana, lo cual indica que los egipcios, aunque de forma empírica, ya conocían las propiedades insecticidas de la nicotina (Huchet, 1995).

Desde estos primeros intentos de control de plagas de productos almacenados hasta la actualidad el hombre ha desarrollado una variada gama de técnicas de control basadas en el conocimiento preciso de la biología y comportamiento de las especies implicadas y en las posibilidades que ofrecen los avances tecnológicos. Estas técnicas permiten abordar el problema de las plagas de granos almacenados desde distintas perspectivas. Algunas actuaciones son de tipo preventivo y su adopción es siempre recomendable. Cuando se ha iniciado la infestación es absolutamente necesario aplicar medidas de tipo curativo si se quiere preservar la integridad del producto almacenado. Ciertos métodos, como los tratamientos químicos, pueden aplicarse en ambos contextos. La mayor parte de estos métodos se emplean, con algunas restricciones, para el control de plagas de productos alimentarios, especialmente granos, y algunas de ellas pueden también utilizarse para proteger otros productos.

Habitualmente los productos almacenados se guardan en contenedores o se empacan durante un periodo de duración variable, pero en general suficiente para que en caso de infestación, las plagas se multipliquen hasta niveles intolerables, dada la elevada tasa intrínseca de crecimiento de la mayoría de las especies. Por este motivo, al margen de las medidas preventivas que se adopten es muy conveniente establecer sistemas para la detección precoz de la infestación. Muchas plagas son difíciles de detectar. A veces la mercancía puede ir infestada inadvertidamente con huevos, ácaros, o incluso larvas que completan su desarrollo dentro del grano (por ejemplo: Sitophilus granarius, brúquidos, etc.). Incluso después de aplicar una medida de control, preventiva o curativa, conviene mantener el sistema de vigilancia para detectar la posible reinfección a partir de ejemplares que hayan
Plagas de los productos almacenados

sobrevivido. Tradicionalmente el sistema de vigilancia consistía en la extracción periódica (aproximadamente quincenal) de muestras del producto para su posterior análisis en laboratorio. Este sistema tiene el inconveniente de que a veces no detecta eficazmente la presencia de las plagas, por tener estas una distribución contagiosa en el producto. En la actualidad, los sistemas de vigilancia más empleados se basan en trampas de varios tipos (feromonas, luz, etc.) que permiten detectar la presencia de la plaga incluso a bajas densidades poblacionales.

Actualmente se están ensayado otros sistemas más sofisticados de detección. Mediante termosondas se puede detectar el aumento de temperatura provocado por la actividad de la plaga en el producto almacenado, pero esta técnica sólo es fiable cuando el ataque es importante, nunca para la detección de focos puntuales. Los detectores electrónicos de sonido (Mankin & cols., 1996) y la espectroscopia en el infrarrojo cercano (Ridgway & Chambers, 1996) son algunos de los métodos más novedosos.

6.1. Adecuación e higiene de locales y productos almacenados

Estas medidas preventivas son la pieza clave de cualquier programa de lucha, y deben observarse escrupulosamente para garantizar una adecuada conservación del producto.

El mismo diseño de los sistemas de almacenaje juega un importante papel que determina la posibilidad de llevar a cabo una adecuada higiene, inspección y control de las plagas que eventualmente aparezcan. Los alimentos deben estar protegidos contra la humedad, y pintados de colores reflectantes para evitar el calentamiento de la estructura y por tanto del producto almacenado en ella.

Los edificios deben mantenerse en buen estado, sin grietas ni resquicios que puedan cobijar ejemplares de las especies plaga. Las paredes y el suelo deben lavarse y cepillarse, o preferiblemente aspirarse. Idealmente debe mantenerse limpieza la maquinaria. Los restos (sacos, granos viejos, etc.) deben retirarse y quemarse, pues constituyen un importante foco de infestación. Después de la limpieza se recomienda pintar las paredes de blanco y tratar todas las superficies con algún insecticida autorizado o fumigar.

Es conveniente disponer mallas de luz adecuada en las ventanas para impedir la entrada de los insectos. La posibilidad de cerrar herméticamente las instalaciones de almacenaje (edificios, silos, etc.) también restringe el acceso de fauna indeseable y además potencia la eficacia de los tratamientos fumigantes para eliminar las infestaciones que eventualmente pudieran producirse. En muchos países existen sistemas de almacenaje muy sofisticados, que permiten la conservación de reservas de granos durante largos períodos y facilitan la aplicación de medidas de control en caso necesario.

La principal causa de contaminación de los productos almacenados es la denominada infestación cruzada, bien por introducir productos sanos en un almacén ya infestado, bien por introducir productos infestados en un almacén limpio. Por este motivo, se debe garantizar no sólo la limpieza de las instalaciones, sino la de la mercancía que se tiene que almacenar. Los granos en mal estado o con humedad excesiva, deben retirarse para su secado, limpieza, selección, y en su caso desinsectación. Si la mercancía se conserva en sacos o paquetes, conviene organizar pilas con una separación mínima de un metro de paredes y techo, de forma que se facilite el acceso y los posibles tratamientos. Por otra parte, un adecuado manejo de los granos durante y después de la cosecha, reducirá el número de granos dañados y por tanto el ataque de plagas secundarias.

6.2. Manejo de temperatura y humedad

La temperatura y la humedad son factores abióticos determinantes en el desarrollo de los insectos. Por otra parte, los granos son organismos vivos en estado de latencia que deben ser conservados con una baja tasa metabólica para conservar su calidad y poder germinativo. En malas condiciones de almacenaje, los granos pueden deteriorarse y además se hacen más susceptibles al ataque de organismos nocivos.

Para prevenir el ataque de plagas es conveniente mantener los productos almacenados a una temperatura máxima de 15°C, por debajo de la cual muy pocas especies pueden desarrollarse. En el caso de los ácaros la temperatura requerida es inferior a 5°C (Cunnington, 1976), si bien su ataque sólo es teímible en condiciones de alta humedad. No obstante, el mantenimiento del producto a baja temperatura es una medida preventiva, pues aunque evita el desarrollo de las plagas, no sirve para desinfectarlo una vez atacado, pues numerosas especies son tolerantes al frío. Sitophilus granarius y Oryzaephilus surinamensis pueden sobrevivir a 0°C durante varios meses (Mathlein, 1961), y adultos acclimatados de Cryptolestes ferrugineus pueden soportar temperaturas de -18°C durante más de un mes (Smith, 1970). No obstante, la congelación entre 15 y 20°C bajo cero durante 24-48 horas se postula como un método eficaz para el control de Acanthoscelides obtectus en judías, sin que ello suponga merma alguna en su calidad culinaria (Berra & cols., 1992).

En el polo opuesto, temperaturas elevadas mantenidas durante un cierto tiempo reducen la supervivencia y la oviposición de numerosas plagas de almacén, especialmente en condiciones de baja humedad. Pradzynska (1995) ha comprobado en estudios de laboratorio que temperaturas de 45-60°C eliminan todas las fases de Sitophilus granarius y no afecta al aspecto y la capacidad germinativa de los granos de trigo. Esta técnica podría ser útil en situaciones donde exista cierta tolerancia a la presencia de la plaga en el producto.

La relación entre humedad relativa en la atmósfera intergranular y el contenido en humedad de los granos es un fenómeno complejo. Habitualmente se considera que la humedad relativa debe estar por debajo del 65% y el contenido en humedad del grano no debe superar el 14% para conseguir una conservación adecuada (Pixon, 1982). Tras ser cosechados los granos tienen un porcentaje alto de humedad, y es conveniente secarlos antes de su almacenamiento. Cuando mayor sea el periodo previsto de almacenamiento, menor debe ser el contenido de humedad del grano almacenado. Con una humedad inferior al 14% muchas especies de insectos son incapaces de desarrollarse sobre los granos. Algunas plagas primarias muy nocivas, como Sitophilus, son incapaces de ovipositar en granos con un contenido en humedad inferior al 10% (Birch, 1953). Para una determinada temperatura, la longevidad de los adultos es generalmente inferior cuando la humedad es baja (Evans, 1983). Reduciendo la humedad también se restringen los problemas de ácaros y de hongos. Por otra parte, la tasa de descomposición de los insecticidas que puedan aplicarse es más rápida cuando la humedad es alta, y por tanto disminuye la eficacia de los tratamientos. La reducción del contenido en humedad de los granos puede conseguirse por secado artificial, o de una forma natural en zonas áridas.
6.3. Almacenamiento hermético y atmósferas controladas

El almacenamiento hermético es una técnica antigua y aparentemente sencilla para la conservación del grano almacenado. Se basa en que la propia actividad respiratoria de las semillas, animales y microorganismos agota el oxígeno y aumenta el contenido en anhidrido carbónico del ambiente interior del contenedor. La atmósfera generada mata plagas y hongos, o al menos reduce el crecimiento de sus poblaciones. La eficacia del método depende del grado de estanqueidad de las instalaciones, temperatura, humedad del grano, abundancia inicial de plagas y hongos, y del período de almacenaje.

La estanqueidad total es difícil de conseguir, y desde un punto de vista práctico se puede considerar que un sistema de almacenaje funciona como hermético cuando la tasa de ganancia de oxígeno desde el exterior es inferior a la tasa de consumo en el interior. Actualmente se consiguen buenos niveles de estanqueidad en algunos sistemas de almacenaje, especialmente en estructuras flexibles, sin embargo, se considera que en general la mayoría de los sistemas de almacenaje modernos no están acondicionados para que esta técnica, aplicada en exclusividad, garantice la protección de los granos (Annis & Banks, 1993).

En relación directa con la técnica del almacenaje hermético se hallan las técnicas de atmósfera controlada. Estas técnicas consisten en la manipulación del aire que rodea el producto de forma que sea lejal para las plagas. Las dos técnicas más habituales de conseguir una atmósfera letal son reducir el contenido en oxígeno y aumentar la proporción de anhidrido carbónico. Para la primera técnica se inyecta nitrógeno en el sistema de almacenaje hasta que la proporción de oxígeno esté por debajo del 2%. La segunda técnica es más común, y se basa en la inyección de anhidrido carbónico en el sistema de almacenaje hasta alcanzar un nivel aproximado del 70%.

La atmósfera controlada es un método limpio (sin residuos). En realidad puede considerarse como una técnica de fumigación especializada, si bien requiere periodos de tratamiento más prolongados. La protección se mantiene a largo plazo si el sistema permite conservar adecuadamente las características de la combinación gaseosa generada.

6.4. Tratamientos químicos

Por su eficacia y bajo coste, es el método más usado en la actualidad. Sin embargo, debido a la estricta normativa en relación con los residuos de insecticidas en productos alimentarios, la gama de productos utilizables es cada vez más restringida.

Los productos habitualmente utilizados son insecticidas químicos convencionales y fumigantes. Los insecticidas tienen mayor poder residual que los fumigantes, y el costo de aplicación es menor. Sin embargo, la eficacia de los fumigantes es mucho mayor, y además presentan la gran ventaja de que por su elevado poder de penetración no es necesario mover el producto para realizar el tratamiento.

Los tratamientos con estos productos pueden realizarse siguiendo varios procedimientos. La aplicación de insecticidas sobre paredes, suelos, así como la fumigación completa de los locales de almacenamiento son medidas preventivas habituales. También es frecuente el tratamiento directo del producto almacenado, si bien en este caso existen más restricciones por posibles problemas de residuos y por el uso que se le vaya a dar al producto almacenado.

Para los tratamientos insecticidas convencionales, en pulverización o espolvoreo, se emplean materias activas de baja toxicidad formuladas a baja dosis, entre las que se encuentran organofosforados (dicrolovos, foxim, malatión, metacriños, metil-clopririmfos, metil-pirimifos), piretroides (deltametrina), así como extractos de peltre y piretrinas naturales. Es frecuente que los piretroides y las piretrinas naturales se formulen con butóxido de piperonilo (PBO) para potenciar su acción. También están autorizadas en España algunas formulaciones mixtas a base de metil-pirimifos y permetrín.

Todos los productos citados pueden usarse para la desinfección de las instalaciones (paredes, suelo, maquinaria, etc.), sin embargo, no todos están autorizados para su empleo directo sobre el producto almacenado. La aplicación de productos insecticidas directamente sobre los granos ("grain protectants") es una práctica frecuente y a menudo incorporada en la cadena de procesado en los almacenes. No obstante, en países como EE.UU. el cambio de carácter de los consumidores ante los insecticidas ha llevado a la prohibición de este procedimiento (Hill, 1987). En España todavía existen algunos insecticidas autorizados para el tratamiento directo de granos, como deltametrina, malatión, metil-clorpirinos, metil-pirimifos (sólo o mezclado con permetrín), pelitre natural y piretrinas naturales. En todos los casos es imperativo respetar el plazo de seguridad indicado en la etiqueta del producto antes de la utilización de los granos tratados.

Como la mayoría de los piretroides, la deltametrina es más eficaz a baja temperatura, y además presenta la ventaja de mantener su eficacia en condiciones de elevada humedad (>16%), mientras que los organofosforados son más activos con temperaturas altas y pierden rápidamente eficacia cuando aumenta la humedad (Ducom, 1987).

Para la protección de las semillas y primeras fases de desarrollo de algunos cultivos (algodón, cereales, colza, lino, remolacha) está autorizado el tratamiento con diversos insecticidas (furaticarbo, imidacloprid, lindano, permetrín, oxamilo), a menudo formulados con fungicidas (maneb, tiron), y que paralelamente confieren protección contra las plagas de almacén. Sin embargo, el único destino autorizado de las semillas tratadas con estos productos es la siembra.

En relación con los productos fumigantes, las únicas materias activas autorizadas en España son el ácido cianhídrico, el bromuro de metilo y los fosfuros de aluminio y magnesio. Los productos fumigantes son sumamente tóxicos y sólo pueden ser aplicados, bajo estrictas normas de seguridad, por organismos oficiales o empresas autorizadas. La estanqueidad de los sistemas de almacenaje es un requisito imprescindible para garantizar la eficacia del tratamiento. Por
Plagas de los productos almacenados

En otra parte, la susceptibilidad de las plagas a los fumigantes aumenta con la temperatura. La fumigación a temperaturas inferiores al umbral de desarrollo de las plagas es de dudosa eficacia.

El ácido cianhídrico se usa para la desinsectación y desratización de locales vacíos y para tratamientos de cuarentena de plantas vivas, semilleros y flores, teniendo en cuenta que los productos tratados no pueden dedicarse a la alimentación.

El bromuro de metilo es un producto inodoro que por seguridad se formula mezclado con cloropirina para detectar su presencia. Se utiliza para desinfección del suelo, locales, madera, granos, así como para tratamientos de cuarentena de frutas y hortalizas frescas, sin embargo, no está autorizado el tratamiento de productos alimentarios transformados. Por otra parte, el bromuro de metilo puede disminuir sensiblemente el poder germinativo de las semillas tratadas.

Los fosfuro actúan liberando fosfina al entrar en contacto con la humedad ambiental. Son los fumigantes más empleados actualmente, pues vienen formulados en pastillas y tabletas de fácil dosificación y distribución sobre el producto a tratar, si bien deben usarse con mucha precaución ya que la fosfina es muy inflamable y explosiva. Se utilizan en la desinfección de locales, productos almacenados (granos, cacao, especias, etc.) y tratamientos de cuarentena. No es conveniente emplear fosfuros para tratar semillas cuya humedad sea superior al 12%.

La mezcla de sulfuro de carbono y tetracloruro de carbono, muy popular en España para el control de plagas de granos almacenados se prohibió recientemente por problemas de residuos.

En algunos países se han llevado a cabo experiencias con biogas para el control de plagas de granos almacenados, dando resultados satisfactorios (Singh & cols., 1994).

Existen otros tipos de sustancias químicas que también se usan en el control de plagas de almacén, aunque su uso está menos extendido. Los reguladores del crecimiento de insectos pueden ser una alternativa de interés a los insecticidas convencionales (Oberlander & cols., 1997). Presentan baja toxicidad para los vertebrados y son activos frente a la mayoría de las plagas de almacén. Su principal inconveniente es que no controlan adultos y no tienen efecto de choque. En España está autorizado el metopreno, un análogo sintético de la hormona juvenil, para el control de Lasioderma serricorne y Ephyestia aequa in tabaco.

En zonas donde no es posible aplicar técnicas de control avanzadas, el empleo de polvos y extractos de plantas diversas para la protección de los granos almacenados se postula como una alternativa aceptable, existiendo abundante bibliografía sobre la eficacia de diversos preparados en todo tipo de granos (Dales, 1996). El desarrollo de este método de control sería de utilidad en zonas donde se practica una agricultura de subsistencia (Shaya & cols., 1997), si bien es necesario tener en cuenta la posible toxicidad de los productos empleados, u otros efectos colaterales negativos que ya han sido descritos, como la pérdida de poder germinativo (Mahgoub & Ahmed, 1996), así como de cualidades organolépticas (Jood & cols., 1996) o culinarias (Parsai & cols., 1994).

6.5. Radiaciones electromagnéticas

Los estudios para establecer la posibilidad de emplear las radiaciones electromagnéticas para el control de plagas de insectos comenzaron en los años 50, como respuesta a los crecientes problemas ecológicos y toxicológicos suscitados por el empleo indiscriminado de plaguicidas. Los distintos tipos de radiación tienen propiedades muy diferentes que permiten enfocar el problema del control de plagas de almacén desde muy distintas perspectivas. Su elevado costo y la peligrosidad de algunos tratamientos son los principales inconvenientes, lo cual les resta competitividad frente a otros métodos.

Las radiofrecuencias, con una longitud de onda entre los 10 y los 100 metros, tienen su uso principal en las comunicaciones (radio, televisión, radar, etc.). No poseen energía suficiente para ionizar los tejidos, pero en las longitudes de onda más bajas (microwave), producen un calentamiento dielectrico de los materiales poco conductores situados dentro del campo electromagnético. Sus posibilidades de aplicación son obvias, y de sobra conocidas en uso doméstico (aparatos de microondas) y en medicina (termodermografía). El calor generado por las microondas es proporcional al contenido en agua de los materiales iradiados. Su aplicación en el control de plagas de granos almacenados se basa precisamente en que el contenido en agua del insecto es muy superior al de los granos (Baker & cols., 1956). La radiación de microondas es un método eficaz, incluso para insectos que se alimentan dentro del grano, y la germinación de los granos no se ve afectada. La susceptibilidad a la acción de las microondas varía con las especies, siendo los huevos y las larvas jóvenes las fases más susceptibles.

La radiación infrarroja (entre 10 y 7,8x10 m) tiene menor capacidad de penetración que las microondas y podría ser de interés cuando sólo se precise un calentamiento superficial de los granos almacenados. Si la capa a tratar es de poco grosor, se consigue elevar la temperatura hasta 65-68 °C en poco tiempo (60 segundos) y por tanto un eficaz control de todos los insectos infestantes (FAO, 1985).

Las radiaciones visible y ultravioleta (entre 780 y 0,6 nanómetros) pueden usarse en control de plagas de una forma indirecta. Los insectos tienen picos de recepción visual a determinadas longitudes de onda, incluidas tanto en el espectro visible para el ojo humano, como en el ultravioleta. La atracción de algunos insectos por determinados colores, como el azul o el amarillo es conocida y empleada para la preparación de trampas cromáticas, especialmente para el monitoreo de poblaciones en campo e invernadero. Las trampas luminosas para estimar poblaciones de insectos nocturnos también son de conocida aplicación en el marco del control de plagas. En condiciones de almacén la principal utilidad es la detección precoz de infestaciones mediante emisores de ultravioletas, ya que algunas especies, especialmente de polillas, tienen respuestas en esta parte del espectro (Sterner, 1959).

Por debajo del ultravioleta se hallan una serie de radiaciones de muy corta longitud de onda y elevada frecuencia que tienen la facultad de ionizar los tejidos. Entre las radiaciones ionizantes más conocidas se encuentran los rayos X, de amplio uso en medicina y los rayos γ, que han tenido aplicaciones más diversas, entre ellas el control de plagas. Los rayos γ y los fotones de alta energía emitidos por cuerpos radiactivos bajo determinadas condiciones, cuya longitud de onda oscila entre 10 y 10 nanómetros. Tienen una gran capacidad de ionización y son más penetrantes que los rayos X. Al atravesar los tejidos desplazan a los electrones de la periferia de los átomos, deshacen los enlaces covalentes de las moléculas y provocan la aparición de radicales libres muy reactivos. Este tipo de reacciones provoca daños irreparables en los seres vivos, especialmente en su ADN (errores en la
duplicación), pero también en los fosfolípidos de la membrana celular, causando la senescencia de los tejidos. Efectos ionizantes similares pueden también producirse por emisiones de partículas de alta energía procedentes de átomos radiactivos (rayos α y β). Los rayos β son núcleos de helio (heliones) y tienen carga positiva. Su capacidad de ionización es alta, sin embargo, su poder de penetración es bastante escaso. Los rayos β son electrones de alta velocidad (negatones) y su carga eléctrica es negativa. Son muy ionizantes y con un gran poder de penetración.

Entre las radiaciones ionizantes más utilizadas en el control de plagas en general y de almacén en particular, se hallan los rayos γ y los electrones acelerados (rayos β), si bien su elevado costo y la complejidad para manipular el grano empacado para su irradiación, limitan bastante su empleo. Este tipo de radiaciones puede aplicarse a dosis letales para eliminar de inmediato la población infestante o a dosis subleales que inducen la esterilidad de los individuos irradiados. La técnica de esterilización y suelta de especies irradiadas fue puesta a prueba por Knippling (1959) para eliminar la musca del ganado (Cochliomyia hominivorax) en Texas, y posteriormente ha dado excelentes resultados para el control de otras plagas en zonas puntuales (Ceratitis capitata, Daucus dorsalis). Sin embargo, para el control de plagas de productos almacenados es más habitual usar dosis letales, ya que los insectos esterilizados pueden vivir largo tiempo y seguir produciendo daños. También es frecuente emplear dosis letales de radiaciones ionizantes para tratamientos de cuarentena, debido a las fuertes restricciones que el comercio internacional impone en relación con los límites de residuos de plaguicidas en los alimentos (Cugier & cols., 1991).

La eficacia de las radiaciones ionizantes es variable según la plaga, si bien como norma general los lepidópteros son más resistentes que los coleópteros y los dípteros. La resistencia al tratamiento aumenta con la edad del insecto; de hecho, una vez embarionada suele ser la más sensible a las radiaciones ionizantes, debido a su mayor tasa de multiplicación celular. La dosis requerida para desinfectar habas atacadas por Bruchus dentipes son muy superiores si la población infestante ya ha alcanzado el estado de pupa (Mansour & Al-Bacheer, 1995).

Los insectos son mucho más sensibles a la irradiación que los granos, por lo que esta técnica puede emplearse sin demasiado riesgo para el producto, si bien a dosis altas puede haber pérdida de poder germinativo. La F.A.O. y la O.M.S. indican que los alimentos irradiados hasta dosis de 10 Kgy no presentan ningún riesgo toxicológico para los consumidores.

6.6. Feromonas

La posibilidad de usar feromonas para el manejo de plagas de almacén permite establecer sistemas de control e ideales, especialmente mediante su integración con técnicas convencionales, y por este motivo están siendo empleadas con éxito en diversos países. Las feromonas de los principales insectos que atacan productos almacenados ya han sido identificadas (Burkholder & Ma, 1985) y están disponibles en el mercado. En España se comercializa la feromona de 21 insectos que atacan productos almacenados (9 lepidópteros y 12 coleópteros), estando incluidas las plagas más importantes. También puede adquirirse la feromona de tres especies de blátidos de interés en programas de salud pública, y que pueden actuar secundariamente como plagas de almacén (Liibán, 1996).

En especies que viven sobre productos almacenados se han descrito dos tipos de ciclo vital diferentes (Imura, 1990). En polillas, y algunos coleópteros (anóbios, brúquidos, dermestidos), los adultos son de corta vida y no se alimentan. Sin embargo, en la mayoría de los coleópteros más típicos de almacén (Cryptolestes spp., Orzyzaephilus spp., Rhizopertha spp., Sitophilus spp., Tribolium spp., etc.), los adultos son muy longevos, y se alimentan activamente del sustrato atacado. Estas estrategias vitales se corresponden con dos sistemas de comunicación química totalmente diferentes (Burkholder, 1982). En el primer grupo, existe una feromona sexual producida por la hembra, que garantiza el encuentro de los sexos y posterior cópula. Por el contrario, en las especies del segundo grupo son los machos los que producen una feromona de agregación que atrae tanto a hembras como a otros machos a una zona determinada.

Como para otras aplicaciones agrícolas o forestales, en el ámbito del control de plagas de productos almacenados las feromonas pueden usar-se con diferentes finalidades (Fleurat-Lessard, 1988; Trematerra, 1989; Burkholder, 1990).

La detección y seguimiento de las poblaciones ('monitoring') es quizás el uso más extendido y fundamentalmente permite ahorrar tratamientos insecticidas y mejorar su eficacia. Por su especificidad y gran sensibilidad, las feromonas permiten detectar la plaga a unos niveles muy bajos de población, difícilmente detectables por otros métodos, y por tanto, pueden tomarse medidas correctoras antes de que se produzcan daños de importancia. Por otra parte, una adecuada disposición de las trampas permite identificar zonas de mayor infestación o de riesgo en el almacen. La utilización de trampas de feromonas también permite conocer la eficacia de las medidas correctoras. La presencia de insectos vivos en las trampas después de una fumigación, es síntoma inequívoco de que ha habido fallos en el tratamiento.

El método de capturas masivas ('mass-trapping') tiene por objeto reducir las poblaciones a niveles tolerables. En general, este método funciona cuando los umbrales de tolerancia no son muy restrictivos y la densidad poblacional de la plaga no es muy alta. El principal problema está en determinar el número de trampas necesario para conseguir un control eficaz.

La confusión sexual ('mating disruption') consiste en inundar el ambiente con la feromona mediante la distribución de numerosos microdifusores. En este ambiente los insectos tienen grandes dificultades para localizar las pistas verda-deras y el número de cópulas se reduce considerablemente. Este sistema es poco eficaz con altas densidades de población y puede ser contraproducente si existe riesgo de inmigración desde el exterior.

Otro método también empleado es la utilización de difusores luminosos que incluyen una capa tratada con insec-ticida que mata los insectos cuando llegan (uso atractivo), si bien este mismo principio puede ser también empleado en las trampas de captura masiva.

El diseño de las trampas de feromonas es muy variado en función de la especie considerada y el objetivo perseguido. En coleópteros, donde tanto larvas como adultos caminan sobre el sustrato o por el suelo, las trampas más utilizadas son las de papel corregulado tratadas con insecticida. Los insectos penetran en las ranuras de la trampa y mueren en su interior. Para especies voladoras también se utilizan trampas tipo delta ('delta trap'). Algunas casas comerciales han desarrollado trampas específicas para capturar coleópteros en la superficie del producto ('pitfall cone trap') o incluso en su interior ('grain probe trap').
Para lepidópteros el diseño de las trampas es bastante variado. En la detección precoz de la plaga suelen usarse trampas con superficies pegajosas (cinta, delta, etc.) donde quedan adheridos los machos. Cuando se pretende hacer un seguimiento poblacional o para capturas masivas, este tipo de trampas no es apropiado, pues si la superficie adhesiva se llena de insectos u otros materiales, las trampas dejan de ser efectivas y es necesario cambiarlas muy a menudo. Es preferible emplear trampas de más capacidad, como las de tipo embudo (‘funnel trap’) que pueden albergar sin problemas varios miles de individuos. Si se utiliza algún insecticida para matar a los insectos que caen en el interior de la trampa, es preciso comprobar que la sustancia empleada no provoca repelencia, pues podría limitar el número de capturas.

La disposición de las trampas en el almacén influye en las capturas, por lo que es muy importante para que el sistema de control sea eficaz. En coleópteros las trampas deben situarse en el suelo (rincones, bajo maquinaria, etc.) o paredes. Para este último es preferible situar las trampas a una cierta altura (2-2,5 metros). Las trampas deben colocarse alejadas de puertas y ventanas para evitar la atracción de insectos del exterior, y se aconseja colocar trampas exteriores para interceptar los insectos que lleguen a las inmediaciones del almacén.

6.7. Control biológico

Los productos almacenados son un ecosistema característico donde diversas especies interactúan. Varios grupos de depredadores y parasitoides aparecen frecuentemente en asociación con las plagas típicas de almacén y pueden causar mortalidades muy elevadas en sus poblaciones. Sin embargo, aunque se establezca una dinámica depredador-presa que garantice un control eficaz de la plaga, este método tiene dos graves inconvenientes que limitan su uso en el ámbito de los productos almacenados. Por una parte, existe un paupérrimo conocimiento de la fauna útil asociada a las plagas de almacen, y por otra, los umbrales de daños permitidos en los productos almacenados son habitualmente muy bajos. El control biológico es factible únicamente en aquellas situaciones donde no se aplica la tolerancia nula, como ocurre en algunos productos no alimentarios, o bien materias primas alimentarias sin procesar. En algunos casos este procedimiento también sería válido para productos destinados a la alimentación animal o para simiente. En zonas donde se practica la agricultura de subsistencia con sistemas de almacenamiento y control poco tecnificados y donde los granos almacenados son el principal sustento de la población local, los métodos de control biológico pueden jugar un papel importante retrasando el deterioro del producto. Es obvio que en estos casos la tolerancia a la presencia de insectos en el producto debe ser levantada por consideraciones de calidad.

En algunas circunstancias el control natural puede ser eficaz hasta tal punto que incluso la aplicación de insecticidas puede resultar contraproducente (Alekseik, 1996). Sin embargo, para las características condiciones de un almacenamiento la técnica más adecuada es la criada y liberación del enemigo natural correspondiente (Hardin, 1991), teniendo en cuenta, que al igual que en otras situaciones, el control más efectivo se produce cuando la infestación es incipiente.

La utilización de bacterias, hongos y virus entomopatógenos que se aplican como insecticidas biológicos es una opción sugerente para situaciones donde el nivel admisible de residuos químicos es muy bajo, especialmente cuando las plagas implicadas son lepidópteros (Subramaniamy & Cutkamp, 1985). La aplicación de B. thuringiensis para el control de <i>Phthorimaea operculata</i> en patatas almacenadas se ha mostrado muy eficaz y además de larga persistencia debido a las condiciones de oscuridad (Salama & cols., 1995). La selección y comercialización de nuevas cepas de <i>B. thuringiensis</i>, o de otras bacterias, con actividad sobre coleópteros abre nuevas expectativas para el control del conjunto de las plagas de almacen. Por otra parte, estudios de laboratorio con el hongo <i>Beauveria bassiana</i> han demostrado que el control de <i>Stiphilus zeamais</i> es tan eficaz como el obtenido cuando se emplean insecticidas, si bien su acción es algo más lenta (Adane & cols., 1996). En España no existen por el momento formulaciones de <i>B. thuringiensis</i> autorizadas para el control de plagas de almacen. En el caso de otros organismos entomopatógenos los productos incluidos en el registro español son por el momento muy escasos (recientemente se ha registrado un hongo entomopatógeno) y para aplicaciones muy específicas.

6.8. Variedades resistentes

El fenómeno de la resistencia puede deberse a diversos factores de tipo físico o químico, y se manifiesta en una mayor mortalidad de la plaga, una reducción de su tasa de oviposición o un alargamiento de la duración del ciclo biológico. La detección de fuentes de resistencia en el acervo genético de los cultivos y especies silvestres relacionadas permite el desarrollo de variedades resistentes que pueden ser incorporadas en los programas de protección del cultivo. En las especies que comienzan su ataque en el campo la resistencia puede actuar a nivel de campo de o de almacen. En las plagas estrictamente asociadas a condiciones de almacenamiento las características, físicas o químicas, que confieren resistencia se hallan exclusivamente en la semilla. La resistencia total no es frecuente en ningún caso, pero en las mismas connotaciones relativas al nivel de tolerancia expresadas en el apartado sobre control biológico, el desarrollo y uso de variedades resistentes puede jugar un importante papel en el control de algunas especies de insectos que atacan granos almacenados.

La posibilidad de controlar plagas de almacen mediante resistencia varietal no se restringe a los granos. Se
ha comprobado que las variedades de tabaco con mayor contenido en nicotina son más resistentes al ataque de *Lasioberpa serricorn* (Carvalho, 1995).

6.9. Otros métodos

Los métodos relacionados más arriba son los más habituales en el control de plagas de almacén, sin embargo, existen otras técnicas menos conocidas que pueden ser alternativas de interés para situaciones concretas.

Algunas de estas técnicas se basan en la aplicación sobre los granos de materiales abrasivos que dañan las cubiertas cuticulares que protegen al insecto contra la desecación. Las cenizas obtenidas quemando diversos materiales pueden ser utilizadas efectivamente. Se ha demostrado experimentalmente que las cenizas de excrementos de vaca son tan efectivas para el control de *Callosobruchus maculatus* en semillas de cañí (como el malachi, Javaid & Ramatulakapa, 1995).

Basándose en el mismo principio se usan distintos tipos de polvos inertes (Golob, 1997). Quizás el polvo sintético de gran eficacia (Aldrythim, 1990) se beneficie de soporte de este tipo de productos sean el Dryade de®, polvo inerte sintético de gran eficacia (Aldrythim, 1990). Sin embargo, existen algunos problemas para la manipulación de los granos tratados, por lo que su principal utilidad se centra en el tratamiento estructural de los almacenamientos (Desmarchelier & cols., 1993).

El voltope periódico de los granos ('tumbling') se ha propuesto como un método eficaz para el control de brúquidos en almacén. Las larvas de primer estadio de *Acalyptosellus obsoletus* sólo son capaces de penetrar la dura testa de las semillas de judía si pueden apoyarse sobre una superficie adyacente estable (otra semilla, pase de el contenedor, etc.), y el periodo de penetración dura 24-48 horas. El almacenamiento en contenedores cilíndricos que puedan ser movidos diariamente evita el ataque del insecto, cuyas larvas son incapaces de perforar la semilla o mueren por aplastamiento durante el voltope (Quentin & cols., 1991).

Las descargas eléctricas también se han ensayado experimentalmente para controlar algunas plagas de almacén, aunque la eficacia nunca fue total (Sharma & Singh, 1994) y la viabilidad económica del método es dudosa.

7. Control integrado de plagas de almacén

Tradicionalmente y todavía en la actualidad, el control de las plagas de almacén se basa mayormente en la utilización de productos químicos, tanto por su eficacia como por su bajo coste. Sin embargo, la presión social ante los riesgos toxicológicos asociados a los tratamientos insecticidas, junto a la aparición de resistencias en la mayoría de las especies dañinas, ha llevado al desarrollo de nuevos métodos de control.

El fenómeno de la resistencia es sobradamente conocido en numerosas especies, y no sólo se limita a los insecticidas convencionales, donde existen numerosas referencias, sino que también afecta a tratamientos tan drásticos como la fumigación con broturas de metilo (Monro & Upitis, 1956), fosfamína (Monro & cols., 1972; Tyler & cols., 1983, Irshad & Iqbal, 1994; Zettler & Keefer, 1994), o plantas de rabdoónico (Bond & Buckland, 1979). También se han detectado resistencias a productos tan específicos como los reguladores de crecimiento (Dye, 1972; Benetz & Helms, 1994), o incluso a ciertos agentes de tipo biológico, como el *Bacillus thuringiensis* (Kinsinger & McGaughey, 1979).

Sobre la base de estas consideraciones, la protección de los productos almacenados por métodos exclusivamente químicos no parece ser una estrategia aceptable a largo plazo (Arthur, 1996), y es necesario adoptar una perspectiva más global en la que se incorporen otros métodos y se integren de la forma más adecuada en función de las posibilidades y las circunstancias concretas de cada situación, es decir una estrategia de control integrado. Una primera percepción de las ventajas inherentes al uso de un sistema de control integrado de plagas de almacén, se deriva del hecho de que algunos métodos descritos en los párrafos anteriores están claramente interrelacionados y la aplicación de unos permite mejorar la eficacia de otros (por ejemplo: la eficacia de una fumigación depende en gran medida de la hermeticidad del almacén). No obstante, también se debe considerar que en algunos casos los efectos antagónicos (por ejemplo: el enfriamiento disminuye la eficacia de las fumigaciones). Evans (1987) expone algunos ejemplos de sistemas de manejo de plagas de almacén que integran varios métodos (enfriamiento y secado, enfriamiento y insecticidas, almacenaje hermético y otros métodos, etc.), discutiendo las ventajas e inconvenientes de las distintas combinaciones.

En cualquier caso, las medidas profilácticas constituyen la piedra angular sobre la que deben estructurarse las restantes técnicas. De hecho, estas medidas deben iniciarse mucho antes del almacenaje del producto. En el caso de semillas, la recolección en el momento oportuno seguida de un manejo que no dañe los granos, así como una adecuada limpieza y secado contribuyen a evitar problemas durante el almacenaje. Un diseño racional de las estructuras de almacenamiento y su posterior mantenimiento e higiene también son medidas fundamentales.

Una de las principales limitaciones para establecer sistemas de control integrado en productos almacenados derivan de la gran dificultad para establecer los umbrales económicos y los niveles de daño económico y de aquí la relación beneficio/coste de las medidas de control aplicables (Stern & cols., 1959). En los países industrializados los productos almacenados de tipo alimentario están sometidos a una estricta normativa donde la sola presencia de organismos, vivos o muertos, o incluso restos de éstos, devalúa notablemente el producto o impide totalmente su comercio. Este hecho hace que el nivel de daño económico sea muy bajo (tolerancia nula), y por otra parte, también limita la posibilidad de aplicar determinadas técnicas, como el control biológico. En este contexto la detección precoz de la plaga con trampas de feromonas y atrayentes es de un gran interés (Tremaitre, 1997). En productos donde existe una cierta tolerancia a la presencia de plagas, la utilización de estas trampas ha permitido incluso establecer los niveles mínimos de población admisibles (Hodges & cols., 1986). Los niveles de tolerancia suelen ser menos estrictos en productos no alimentarios o en productos alimentarios en crudo.

Otros posibles factores limitantes para el establecimiento de sistemas de manejo integrado de plagas de almacén son de tipo puramente tecnológico. Algunas técnicas complejas no son fácilmente aplicables para tratamientos a gran escala (por ejemplo: irradiación). La mayoría de los sistemas de almacenaje utilizados actualmente no están acondicionados para aplicar determinadas técnicas (por ejemplo: atmósferas controladas). Finalmente, si se obvian los tratamientos químicos convencionales ('grain protectants'), existen muy pocas técnicas que garanticen una protección a largo plazo para los productos almacenados.
Algunas limitaciones de tipo social y económico también deben ser superadas. Ciertas técnicas son de aplicación peligrosa (irradiación, fumigantes, atmósferas controladas, etc.) y además su utilización e integración en un programa de control requiere una alta cualificación del personal encargado de los sistemas de almacenaje. La incorporación de sistemas expertos para la gestión y manejo de almacenes podría facilitar la labor de la toma de decisiones con relación a la protección del producto almacenado (Longstaff, 1993).

Los consumidores son cada vez más exigentes en productos libres de restos de insectos (tolerancia nula) y en la evitación de la utilización de productos químicos. Compaginar ambos requerimientos de una forma económica es complicado, ya que por el momento la reducción de la dependencia de los insecticidas parece llevar necesariamente asociado un aumento en los costes de control.

8. Consideraciones finales

En este breve repaso se ha intentado dar una visión global de la compleja y variada problemática relativa a los artrópodos que atacan productos almacenados y su control. Algunas especies supusieron un grave problema para el hombre desde el inicio de la agricultura y aún hoy continúan siéndolo, a pesar de que los avances tecnológicos han permitido diversificar notablemente las técnicas empleadas para su control.

Para completar y finalizar este trabajo, es preciso destacar que si la gran capacidad de adaptación y versatilidad de los insectos les ha permitido colonizar todo tipo de hábitats y utilizar los más variados recursos, la especie humana va más allá, pues nuestra capacidad de aprendizaje nos permite manipular situaciones adversas y utilizarlas en nuestro propio beneficio. En este sentido, si bien las plagas de los productos almacenados siguen siendo un grave problema para los sistemas de producción de alimentos a nivel mundial, también es cierto que algunas especies son utilizadas muy provechosamente por el hombre para diversas finalidades. Es sobradamente conocido que numerosos estudios generales sobre ecología, biología y fisiología de insectos, así como diversas pruebas sobre los efectos de nuevas materias activas encaminadas al control de plagas, se realizan habitualmente sobre estos insectos, debido a la facilidad para mantener crías de laboratorio. Por el mismo motivo, es frecuente que algunas plagas de almacen (por ejemplo: Ephesia kuehniella) se utilicen como huéspedes alternativos para la obtención masiva de enemigos naturales que son posteriormente usados en programas de control biológico de otras plagas.

Como una especie más del ecosistema Tierra, el hombre interactúa con las restantes especies de su entorno. Las plagas de almacen colonizaron este peculiar hábitat antrópico desde sus eubioscénosis y con toda seguridad permanecerán en él durante largo tiempo. La única conclusión que por el momento parece aflorar de nuestra ya larga experiencia con estos insectos, es que los avances tecnológicos sólo han permitido aumentar la complejidad de nuestras interacciones con estas especies, y que las estrategias de control de tipo erradication están condenadas al fracaso. El moderno enfoque de integrar todas las técnicas disponibles, nuevas o clásicas, sencillas o complejas, deberá permitir al menos que la incidencia de estos insectos no sea tan perniciosa para las poblaciones humanas, especialmente en los países en desarrollo.
Bibliografía

Plagas de los productos almacenados

KRALJINKOVA, H. 1966.- Conditions promoting adaptation of some pyralids (Lepidoptera, Pytichinae) to synanthropism. Entomologica Bohemica, 14: 45-61.

MAHGOUB, S. M. & AHMED, S. M. S. 1996.- Ricinus communis seed extract as a protector of wheat grains against the rice weevil Sitophilus oryzae L. Annuals of Agricultural Science (Cairo), 41(1): 483-491.

Tabla 1
Artrópodos más comunes que causan daños a productos almacenados en España y productos a los que se asocian.

<table>
<thead>
<tr>
<th>ACAROS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acarus siro</td>
<td>Acaridae</td>
<td></td>
<td>Cereales y derivados, frutos secos, queso, jamón, carne ahumada.</td>
</tr>
<tr>
<td>Acetia tulipae</td>
<td>Eriophyidae</td>
<td></td>
<td>Bulbos (ajo, cebolla, jacinto, tulipán, etc.).</td>
</tr>
<tr>
<td>Glycyphagus domesticus</td>
<td>Glycyphagidae</td>
<td></td>
<td>Cereales, derivados amiláceos, queso, etc.</td>
</tr>
<tr>
<td>Rhizoglyphus echinopus</td>
<td>Acaridae</td>
<td></td>
<td>Bulbos (ajo, cebolla, jacinto, tulipán, etc.).</td>
</tr>
<tr>
<td>Troglyphus putrescentiae</td>
<td>Acaridae</td>
<td></td>
<td>Bulbos, champiñones, cereales, jamón, queso, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLEÓPTEROS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthoscelides obtectus</td>
<td>Bruchidae</td>
<td></td>
<td>Leguminosas (especialmente judas).</td>
</tr>
<tr>
<td>Anthrenus scrophulariae</td>
<td>Dermentidae</td>
<td></td>
<td>Carne seca, fílter, granos, lana, pieles, plumas, seda, etc.</td>
</tr>
<tr>
<td>Anthrenus strenuus</td>
<td>Dermentidae</td>
<td></td>
<td>Carne seca, fílter, granos, lana, pieles, plumas, seda, etc.</td>
</tr>
<tr>
<td>Attacanus unicolor</td>
<td>Dermentidae</td>
<td></td>
<td>Carne seca, fílter, granos, lana, pieles, plumas, seda, etc.</td>
</tr>
<tr>
<td>Callosoebichus chinensis</td>
<td>Bruchidae</td>
<td></td>
<td>Leguminosas.</td>
</tr>
<tr>
<td>Callosoebichus maculatus</td>
<td>Bruchidae</td>
<td></td>
<td>Leguminosas.</td>
</tr>
<tr>
<td>Cryptolestes ferrugineus</td>
<td>Cryptolestidae</td>
<td></td>
<td>Cereales, derivados amiláceos, leguminosas, cacao, especias, etc.</td>
</tr>
<tr>
<td>Dermestes maculatus</td>
<td>Dermestidae</td>
<td></td>
<td>Pieles sin curtir.</td>
</tr>
<tr>
<td>Lasioderma serricorne</td>
<td>Anobiidae</td>
<td></td>
<td>Cacao, derivados amiláceos, especias, frutos secos, granos, tabaco, etc.</td>
</tr>
<tr>
<td>Necrobia rufipes</td>
<td>Ceridae</td>
<td></td>
<td>Carne seca (jamón, etc.).</td>
</tr>
<tr>
<td>Oryzaephilus surinamensis</td>
<td>Silvanidae</td>
<td></td>
<td>Cereales, leguminosas, café, frutos secos, tabaco, plantas secas, etc.</td>
</tr>
<tr>
<td>Rhizopertha dominica</td>
<td>Bostrychidae</td>
<td></td>
<td>Cereales, leguminosas, derivados amiláceos.</td>
</tr>
<tr>
<td>Sitophilus granarius</td>
<td>Curculionidae</td>
<td></td>
<td>Cereales.</td>
</tr>
<tr>
<td>Sitophilus oryzae</td>
<td>Curculionidae</td>
<td></td>
<td>Cereales, derivados amiláceos, especias, frutos secos, granos, tabaco, etc.</td>
</tr>
<tr>
<td>Sitophilus panicearum</td>
<td>Anobiidae</td>
<td></td>
<td>Cacao, derivados amiláceos, especias, frutos secos, granos, tabaco, etc.</td>
</tr>
<tr>
<td>Tenebrio molitor</td>
<td>Tenebrionidae</td>
<td></td>
<td>Cereales, especias, derivados amiláceos, especias.</td>
</tr>
<tr>
<td>Tenebroides mauritianus</td>
<td>Tenebrionidae</td>
<td></td>
<td>Cereales, derivados amiláceos.</td>
</tr>
<tr>
<td>Tribolium castaneum</td>
<td>Tenebrionidae</td>
<td></td>
<td>Cereales, derivados amiláceos, especias, frutos secos, leguminosas.</td>
</tr>
<tr>
<td>Tribolium confusum</td>
<td>Tenebrionidae</td>
<td></td>
<td>Cereales, derivados amiláceos, especias, frutos secos, leguminosas.</td>
</tr>
<tr>
<td>Trogoderma granarium</td>
<td>Dermestidae</td>
<td></td>
<td>Cereales, derivados amiláceos, leguminosas.</td>
</tr>
<tr>
<td>Zobrotes subfasciatus</td>
<td>Bruchidae</td>
<td></td>
<td>Leguminosas (especialmente judas).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEPIDÓPTEROS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadra cautella</td>
<td>Pyralidae</td>
<td></td>
<td>Frutos secos.</td>
</tr>
<tr>
<td>Cadra figulifera</td>
<td>Pyralidae</td>
<td></td>
<td>Frutos secos (higos, uvas).</td>
</tr>
<tr>
<td>Ephesia aequa</td>
<td>Pyralidae</td>
<td></td>
<td>Cacao, cereales, derivados amiláceos, frutos secos, tabaco, etc.</td>
</tr>
<tr>
<td>Ephesia kuehniella</td>
<td>Pyralidae</td>
<td></td>
<td>Cereales, derivados amiláceos, frutos secos.</td>
</tr>
<tr>
<td>Galleria melonella</td>
<td>Pyralidae</td>
<td></td>
<td>Cera.</td>
</tr>
<tr>
<td>Nemapogon granella</td>
<td>Tineidae</td>
<td></td>
<td>Cereales, derivados amiláceos, frutos secos.</td>
</tr>
<tr>
<td>Plopha interpunctella</td>
<td>Pyralidae</td>
<td></td>
<td>Cereales, cacao, derivados amiláceos, frutos secos, leguminosas, etc.</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Gelechiidae</td>
<td></td>
<td>Patales, tabaco.</td>
</tr>
<tr>
<td>Sitotroga cerealella</td>
<td>Gelechiidae</td>
<td></td>
<td>Cereales.</td>
</tr>
<tr>
<td>Tinea pelionella</td>
<td>Tineidae</td>
<td></td>
<td>Lana, pieles, cereales, derivados amiláceos.</td>
</tr>
<tr>
<td>Tinea bisselliella</td>
<td>Tineidae</td>
<td></td>
<td>Lana, pieles, cereales, derivados amiláceos.</td>
</tr>
</tbody>
</table>